
Contents
Some
Historical Notes
will give an introduction how the knowledge on Gravitation in Space and Time has
been developed over the centuries.
GRAVITATIONClassical Gravitation
In classical mechanics gravitation is described by Newton's Law of gravitation.
Thus, gravitation is a field force which diminish with the
square of the distance between two objects.
General Relativity
In his
Theory of General Relativity
Einstein proposed that gravitation is not a force but an intrinsic
property of space and time. The effect of gravitation can be described as the
curvature of the SpaceTime caused by the existence of mass and energy.
This introduced a new understanding the physical reality.
Therefore, a new mathematical description has to be introduced as well. The geometrical properties of SpaceTime can be fully specified by the Metric Tensor G which is a 4x4 Matrix. The properties of G are dependent on the EnergyMassTensor T describing the distribution of energy and matter in space. If there is mass, the Metric Tensor changes for each point dependent on the mass distribution. Since, mass and energy are the same they both effect the SpaceTime. If there is no mass, the SpaceTime is flat and the metric tensor G looks all the same for every point. The Euclidean space is than described by the Minkowski Metric. There is no complete solution of the Einstein field equations. Nevertheless, assuming a single object with some symmetry of the gravitational field an analytical solution is possible. The first developed solution was the Schwarzschild Solution assuming spherical symmetry. A generalization is the Kerr Solution assuming axisymmetry. All the solutions have a singularity for objects with zero radius called Black Holes. More general solutions can only be computed via numerical simulations. If we consider yet less idealized systems the problem explodes into equations with literally thousands of terms in each equation. Some nice simulations on more general solutions can be viewed at Cyberia's General Relativity web page. In our simulations we restrict ourself to the solutions assuming symmetry. Some Properties of General Relativity make the physical effects of gravitation which are captured by the theory much more interesting than the classical mechanics. The Schwarzschild Solution
Schwarzschild was the first to introduce a solution of the Einstein Field Equations in 1916.
His solution is only valid for a single object and the mass is distributed in such a
way that the assumption of spherical symmetry holds. This will hold for point masses,
spheres having a radial symmetric density and even for moving mass if the movement is
radial equal distributed w.r.t. the center (e.g. an exploding, collapsing, or pulsating sphere).
Thus, the equations are given in spherical coordinates.
The solution is described by the
Schwarzschild Metric. The Kerr SolutionIn 1963 Roy Kerr found the solution to Einsteins field equations describing spinning stars or in fact every spinning Black Hole. that can possibly exist. The equations are given in BoyerLindquist Coordinates. The Kerr Metric describes objects having mass and a rotational momentum.An extension to the Kerr Metric is the KerrNewman Metric describing objects having mass, a rotational momentum, and an electrical load. Further Reading on General Relativity
Some brief nonmathematical introductions and tutorials can be viewed at the 